Monday, 16 June 2025
29.3 C
Singapore
28.2 C
Thailand
20.1 C
Indonesia
28.7 C
Philippines

Open-source machine learning systems face increasing security threats

Open-source machine learning tools face rising security threats, with recent findings highlighting critical vulnerabilities across key frameworks.

Recent research has uncovered significant security vulnerabilities in open-source machine learning (ML) frameworks, putting sensitive data and operations at risk. As ML adoption grows across industries, so does the urgency of addressing these threats. The vulnerabilities, identified in a report by JFrog, reveal gaps in ML security compared to more established systems like DevOps and web servers.

Critical vulnerabilities in ML frameworks

Open-source ML projects have seen a rise in security flaws, with JFrog reporting 22 vulnerabilities across 15 ML tools in recent months. Two primary concerns concern server-side components and privilege escalation risks within ML environments. These vulnerabilities could allow attackers to access sensitive files, gain unauthorised privileges, and compromise the entire ML workflow.

One significant flaw involves Weave, a Weights & Biases (W&B) tool that tracks and visualises ML model metrics. The WANDB Weave Directory Traversal vulnerability (CVE-2024-7340) allows attackers to exploit improper input validation in file paths. By doing so, they can access sensitive files, including admin API keys, enabling privilege escalation and potentially compromising ML pipelines.

Another affected tool is ZenML, which manages MLOps pipelines. A critical flaw in ZenML Cloud’s access control lets attackers with minimal access privileges escalate permissions. This could expose confidential data like secrets and model files, allowing attackers to manipulate pipelines, tamper with model data, or disrupt production environments dependent on these pipelines.

Risks of privilege escalation and data breaches

Other vulnerabilities highlight the risks of privilege escalation in ML systems. The Deep Lake Command Injection (CVE-2024-6507) found in the Deep Lake database is particularly severe. This database, designed for AI applications, suffers from improper command sanitisation, allowing attackers to execute arbitrary commands. Such breaches could compromise the database and connected applications, leading to remote code execution.

Vanna AI, a natural language SQL query generation tool, also has a serious vulnerability. The Vanna.AI Prompt Injection (CVE-2024-5565) flaw lets attackers inject malicious code into SQL prompts, which can result in remote code execution. This poses risks like manipulated visualisations, SQL injections, or data theft.

Mage.AI, an MLOps platform for managing data pipelines, is vulnerable to unauthorised shell access, file leaks, and path traversal issues. These flaws enable attackers to control pipelines, expose configurations, and execute malicious commands, risking privilege escalation and data integrity breaches.

The path forward

JFrog’s findings highlight a critical gap in MLOps security. Many organisations fail to integrate AI/ML security with broader cybersecurity strategies, leaving blind spots. Attackers can exploit these vulnerabilities to embed malicious code in models, steal data, or manipulate outputs, creating widespread disruptions.

As ML and AI continue transforming industries, securing their frameworks, datasets, and models is essential. Robust security practices must be prioritised to protect the innovations that drive this growing field.

Hot this week

Milestone brings AI-driven smart city platform to Europe, starting with Genoa

Milestone expands Project Hafnia to Europe, using AI and video data to power smart cities starting with Genoa, supported by NVIDIA and Nebius.

Disinformation security: Safeguarding truth in the digital age

Discover how AI detection tools, public education, and smart regulations are working together to combat the spread of misinformation online.

OpenAI gives ChatGPT voice mode a big update for smoother and more lifelike conversations

OpenAI updates ChatGPT’s voice mode for more natural speech, better emotion, and real-time translation for all paid users.

Meta in talks to invest over US$10 billion in Scale AI

Meta may invest over US$10B in Scale AI, marking one of the biggest private AI funding deals and Meta’s largest external AI investment ever.

Informatica deepens partnership with Databricks to support new Iceberg and OLTP services

Informatica joins Databricks as launch partner for new Iceberg and OLTP solutions, introducing AI tools to speed up GenAI development.

Informatica deepens partnership with Databricks to support new Iceberg and OLTP services

Informatica joins Databricks as launch partner for new Iceberg and OLTP solutions, introducing AI tools to speed up GenAI development.

Hong Kong opens skies to larger drones in bid to grow low-altitude economy

Hong Kong will allow the testing of larger drones to boost its low-altitude economy and improve logistics, following mainland China's lead.

Hong Kong to build new AI supercomputing centre in bid to lead global tech race

Hong Kong plans a new AI supercomputing centre to boost its tech hub status and support growing start-ups across the Greater Bay Area.

Steam adds full native support for Apple Silicon Macs

Steam runs natively on Apple Silicon Macs, ditching Rosetta 2 for smoother performance and better gaming on M1 and M2 devices.

Related Articles

Popular Categories